
Queues

What is a queue?
• It is an ordered group of homogeneous items.

• Queues have two ends:

– Items are added at one end.

– Items are removed from the other end.

• FIFO property: First In, First Out
– The item added first is also removed first

Queue Implementations

Array-based

Linked-list-based

Array-based Implementation

template<class ItemType>

class QueueType {

 public:

 QueueType(int);

 ~QueueType();

 void MakeEmpty();

 bool IsEmpty() const;

 bool IsFull() const;

 void Enqueue(ItemType);

 void Dequeue(ItemType&);

private:

 int front, rear;

 ItemType* items;

 int maxQue;

};

Implementation Issues

• Optimize memory usage.

• Conditions for a full or empty queue.

• Initialize front and rear.

circular array linear array

Optimize memory usage

Full/Empty queue conditions

“Make front point to the element preceding the front
element in the queue!”

NOW!

1.Enqueue (ItemType newItem)

• Function: Adds newItem to the rear of the
queue.

• Preconditions: Queue has been initialized
and is not full.

• Postconditions: newItem is at rear of queue.

Operation on Queue

2. Queue overflow

• The condition resulting from trying to add
an element onto a full queue.

 if(!q.IsFull())

 q.Enqueue(item);

Array-based Implementation (cont.)

template<class ItemType>

void QueueType<ItemType>::Enqueue

(ItemType newItem)

{

 rear = (rear + 1) % maxQue;

 items[rear] = newItem;

}

O(1)

Dequeue (ItemType& item)

• Function: Removes front item from queue
and returns it in item.

• Preconditions: Queue has been initialized
and is not empty.

• Postconditions: Front element has been

removed from queue and item is a copy of

removed element.

Queue underflow

• The condition resulting from trying to

remove an element from an empty queue.

 if(!q.IsEmpty())

 q.Dequeue(item);

Array-based Queue

Implementation (cont.)

template<class ItemType>

void QueueType<ItemType>::Dequeue

(ItemType& item)

{

 front = (front + 1) % maxQue;

 item = items[front];

}

O(1)

Linked-list-based Implementation

• Allocate memory for each new element
dynamically

• Link the queue elements together

• Use two pointers, qFront and qRear, to

mark the front and rear of the queue

