Queues

What Is a queue?

It Is an ordered group of homogeneous items
Queues have two ends:

— Items are added at one end.

— ltems are removed from the other end.

FIFO property: First In, First Out

— The 1tem added first 1s also removed first

il

L]
7
X
N
N
i

Wit

Queue Implementations

Array-based

Linked-list-based

Array-based Implementation

template<class ltemType>
class QueueType {
public:
QueueType(int),
~QueueType();
void MakeEmpty();
bool ISEmpty() const;
bool IsFull() const;
void Enqueue(ltemType);
void Dequeue(ltemType&);

private:
Int front, rear;
ltemType* items;
Int maxQue;

Implementation Issues

Optimize memory usage.

Conditions for a full or empty queue.
Initialize front and rear.

linear array circular array

——

Optimize memory usage

g.Enguelea(3) g.Enqueuea(n) g.Deguelelitem) g.Deguele(itern} g.Engueueaf{ 10}
item =2 item =3

Let the gueue elements

"wrap around"

ifl{rear == maxQue -1}
rear = 0;

else
rear = rear + 1;

or

I rear = (rear + 1) % maxQue;I

fing gueue

front

Full/Empty queue conditions

. Engueus{30} g Engueue(hny 777

<0 <0 The queue s full Il

30 1 30 What Is the condition for a full queue ?

3 3

rear + 1 == front

g Dequeuelitern) g .Degueuelitem) g Deqgueuelitem) g.Degueualitem)
item =24 item = 10 item =20 item = 30

20 | frant 20 50 20 The queue Is empty 1!

30 1 E_L a0 30 30 What Is the condlition for an empty queue ?

5 B 5 L —- 5

rear + 1 == front

3 10 10 10

We cannot distinguish between the twio coses 1

“Make front point to the element preceding the front
element in the queue

'9’

g.Enguelel30}

BEFORE !! NOW!

an 20 |n 20

The queue Is full !!

50 20 11 What Is the condition for a full queue ?

ressrved
—-
D 5 rear + 1 == front

10

g.Degueuelitem) g.Degueusalitem) g.Degueusalitam)
item = 10 item = 20 itemn = 30

== og The gueue |s empty !!

rear =
30 .| 30 o

20

What Is the conditlon for an empty queue ?

5 5 5]

rear == front

rescreed
10 10 10

Bosed on this solution, one memory [ocation is wosted [

Operation on Queue

1.Enqueue (ItemType newltem)

Function: Adds newltem to the rear of the
queue.

Preconditions: Queue has been initialized
and 1s not full.

Postconditions: newltem Is at rear of queue.

2. Queue overflow

The condition resulting from trying to add
an element onto a full queue.

iIf('g.IsFull())
g.Enqueue(item);

Array-based Implementation (cont.)

template<class ltemType>

void QueueType<ltemType>:..Enqueue
(ItemType newltem)

{

rear = (rear + 1) % maxQue,
items|rear] = newltem; O(1)

}

Dequeue (ltemType& item)

Function: Removes front item from queue
and returns it in item.

Preconditions: Queue has been initialized
and Is not empty.

Postconditions: Front element has been
removed from queue and item Is a copy of
removed element.

Queue underflow

The condition resulting from trying to
remove an element from an empty queue.

If('g.IsEmpty())
g.Dequeue(item);

Array-based Queue
Implementation (cont.)

template<class ltemType>

void QueueType<ltemType>:..Dequeue
(ItemType& item)

{

front = (front + 1) % maxQue,;
item = items|front];

}

O(1)

Linked-list-based Implementation

Allocate memory for each new element
dynamically

Link the queue elements together

Use two pointers, gFront and gRear, to
mark the front and rear of the queue

