Queues



What Is a queue?

It Is an ordered group of homogeneous items
Queues have two ends:

— Items are added at one end.

— ltems are removed from the other end.

FIFO property: First In, First Out

— The 1tem added first 1s also removed first
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Queue Implementations

Array-based

Linked-list-based




Array-based Implementation

template<class ltemType>
class QueueType {
public:
QueueType(int),
~QueueType();
void MakeEmpty();
bool ISEmpty() const;
bool IsFull() const;
void Enqueue(ltemType);
void Dequeue(ltemType&);

private:
Int front, rear;
ltemType* items;
Int maxQue;




Implementation Issues

Optimize memory usage.

Conditions for a full or empty queue.
Initialize front and rear.

linear array circular array
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Optimize memory usage
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Let the gueue elements

"wrap around"

ifl{rear == maxQue -1}
rear = 0;

else
rear = rear + 1;

or

I rear = (rear + 1) % maxQue;I
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Full/Empty queue conditions
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“Make front point to the element preceding the front
element in the queue
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Operation on Queue

1.Enqueue (ItemType newltem)

Function: Adds newltem to the rear of the
queue.

Preconditions: Queue has been initialized
and 1s not full.

Postconditions: newltem Is at rear of queue.



2. Queue overflow

The condition resulting from trying to add
an element onto a full queue.

iIf('g.IsFull())
g.Enqueue(item);



Array-based Implementation (cont.)

template<class ltemType>

void QueueType<ltemType>:..Enqueue
(ItemType newltem)

{

rear = (rear + 1) % maxQue,
items|rear] = newltem; O(1)

}




Dequeue (ltemType& item)

Function: Removes front item from queue
and returns it in item.

Preconditions: Queue has been initialized
and Is not empty.

Postconditions: Front element has been
removed from queue and item Is a copy of
removed element.



Queue underflow

The condition resulting from trying to
remove an element from an empty queue.

If('g.IsEmpty())
g.Dequeue(item);



Array-based Queue
Implementation (cont.)

template<class ltemType>

void QueueType<ltemType>:..Dequeue
(ItemType& item)

{

front = (front + 1) % maxQue,;
item = items|front];

}

O(1)



Linked-list-based Implementation

Allocate memory for each new element
dynamically

Link the queue elements together

Use two pointers, gFront and gRear, to
mark the front and rear of the queue




